
8 Matrix Multiplication

1. The three-post snap group can be represented by a set of graphs, each with three towns. The
posts are the towns and the elastic bands are the roads. For example,

𝐴 =

fr
om

1
2
3

to

⎡⎢⎢⎣

1
1

2
0

3
0

0 0 1
0 1 0

⎤⎥⎥⎦
⟷

1

2

3

(a) Draw the graphs and transportation matrices for this group.

Here they are!

𝐼 =
⎡⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⟷

1

2

3
𝐴 =

⎡⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦
⟷

1

2

3

𝐵 =
⎡⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎦
⟷

1

2

3
𝐶 =

⎡⎢⎢⎣

0 1 0
1 0 0
0 0 1

⎤⎥⎥⎦
⟷

1

2

3

𝐷 =
⎡⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦
⟷

1

2

3
𝐸 =

⎡⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
⟷

1

2

3

(b) Try a few multiplications and notice the isomorphism to the snap group.

Before, we found that 𝐴 ∙ 𝐵 = 𝐸. But does this work with the matrices? We have

𝐴𝐵 =
⎡⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎦

⎡⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎦

=
⎡⎢⎢⎣

⟨1, 0, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨1, 0, 0⟩ ⋅ ⟨0, 1, 0⟩ ⟨1, 0, 0⟩ ⋅ ⟨1, 0, 0⟩
⟨0, 0, 1⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 0, 1⟩ ⋅ ⟨0, 1, 0⟩ ⟨0, 0, 1⟩ ⋅ ⟨1, 0, 0⟩
⟨0, 1, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 1, 0⟩ ⋅ ⟨0, 1, 0⟩ ⟨0, 1, 0⟩ ⋅ ⟨1, 0, 0⟩

⎤⎥⎥⎦

=
⎡⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎦
= 𝐷.

Huh?
The issue is simple. Matrix multiplication, just like the snap operation, is not commutative, and we need to

flip the order of the matrices so it represents taking 𝐵 first, then 𝐴. After all, that’s what we defined 𝐴 ∙ 𝐵 to
be.
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𝐵𝐴 =
⎡
⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤
⎥⎥⎦

=
⎡
⎢⎢⎣

⟨0, 0, 1⟩ ⋅ ⟨1, 0, 0⟩ ⟨0, 0, 1⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 0, 1⟩ ⋅ ⟨0, 1, 0⟩
⟨0, 1, 0⟩ ⋅ ⟨1, 0, 0⟩ ⟨0, 1, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨0, 1, 0⟩ ⋅ ⟨0, 1, 0⟩
⟨1, 0, 0⟩ ⋅ ⟨1, 0, 0⟩ ⟨1, 0, 0⟩ ⋅ ⟨0, 0, 1⟩ ⟨1, 0, 0⟩ ⋅ ⟨0, 1, 0⟩

⎤
⎥⎥⎦

=
⎡⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎦
= 𝐸.

This works for any of the matrices.

2. Using 3 × 3 matrices 𝐴 and 𝐵 from this section, compute

For reference, the matrices are

𝐴 =
⎡⎢⎢⎢⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤⎥⎥⎥⎦
, 𝐵 =

⎡⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤⎥⎥⎥⎦
.

(a) 𝐴𝐴 = 𝐴2

We use the column vector/row vector approach.

𝐴𝐴 =
⎡
⎢⎢⎢⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤
⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨1, 1, 1, 0⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨2, 1, 1, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨2, 0, 1, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨2, 0, 1, 1⟩

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

10 4 7 6
4 3 4 3
7 4 7 6
6 3 6 6

⎤⎥⎥⎥⎦
.

(b) 𝐴𝐵

𝐴𝐵 =
⎡⎢⎢⎢⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎣

⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 2, 2⟩ ⋅ ⟨1, 1, 0, 0⟩
⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩
⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩ ⟨2, 1, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨2, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩

⎤
⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

3 2 3 4
1 2 2 1
3 3 2 2
3 2 1 2

⎤⎥⎥⎥⎦
.
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(c) 𝐵𝐴

𝐵𝐴 =
⎡⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1 1 2 2
1 1 1 0
2 1 1 1
2 0 1 1

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

⟨1, 1, 0, 0⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨0, 1, 1, 0⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨0, 0, 1, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨2, 0, 1, 1⟩
⟨1, 0, 0, 1⟩ ⋅ ⟨1, 1, 2, 2⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨1, 1, 1, 0⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨2, 1, 1, 1⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨2, 0, 1, 1⟩

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

2 2 3 2
3 2 2 1
4 1 2 2
3 1 3 3

⎤⎥⎥⎥⎦
.

(d) 𝐵2

𝐵𝐴 =
⎡⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

⟨1, 1, 0, 0⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 1, 0, 0⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨0, 1, 1, 0⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨0, 1, 1, 0⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨0, 0, 1, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨0, 0, 1, 1⟩ ⋅ ⟨0, 0, 1, 1⟩
⟨1, 0, 0, 1⟩ ⋅ ⟨1, 0, 0, 1⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨1, 1, 0, 0⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨0, 1, 1, 0⟩ ⟨1, 0, 0, 1⟩ ⋅ ⟨0, 0, 1, 1⟩

⎤⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎣

1 2 1 0
0 1 2 1
1 0 1 2
2 1 0 1

⎤
⎥⎥⎥⎦
.

(e) Which one (𝐴𝐵 and 𝐵𝐴) represents taking a step by walking, then by bus?

Since 𝐴 is walking and 𝐵 is bus, we know that 𝐴𝐵 is a step by walking, then by bus. Unlike most of the
operations we’ve been doing, it is not right-to-left!

One way to conceptualize this is to draw an arrow from “from” to “to” for each matrix, then join the arrows.
For example, for the product 𝐴𝐵, it should look like this:

𝐴𝐵 =

fro
m

𝐴
𝐵
𝐶
𝐷

to

⎡⎢⎢⎢⎣

𝐴
1

𝐵
1

𝐶
2

𝐷
2

1 1 1 0
2 1 1 1
2 0 1 1

⎤⎥⎥⎥⎦

fro
m

𝐴
𝐵
𝐶
𝐷

to

⎡⎢⎢⎢⎣

𝐴
1

𝐵
1

𝐶
0

𝐷
0

0 1 1 0
0 0 1 1
1 0 0 1

⎤⎥⎥⎥⎦
This arrow shows the order in which paths are taken.

(f) Use your calculator to check your computations of 𝐴2, 𝐴𝐵, 𝐵𝐴, and 𝐵2.

Here’s some instructions on multiplying matrices on various TI calculators:
TI-83/TI-84: Press “2nd” and “𝑥−1,” or if your calculator has it, the “MATRIX” button, to enter the matrix

editing page. Navigate to the “EDIT” menu, then navigate to the desired name for the first matrix. Press enter
to select that matrix, then type in the size and values of the matrix. Repeat this for the second matrix. When
you’re ready to multiply them, press “2nd” and “𝑥−1” again, but stay in the “NAMES” menu. Navigate to the
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first matrix to multiply, and press enter. Repeat this for the second matrix. Finally, pressing enter to calculate
will give us the result of the multiplication (or an error if the dimensions are incorrect).

TI Nspire: Press the button to the bottom left of “
del
←” that looks like “|▮|

{
▮
▮

”. Navigate to the button that

looks like a blank 3 × 3 matrix and press enter. Enter in the size of the first matrix, then the values. Repeat
this process for the second matrix, then multiply the two matrices by pressing enter.

Assuming I didn’t make a large oopsie, those answers are all correct. :P

3. Write a 3 × 3 matrix 𝑇 that shows the following scenario: you can go from town 𝐵 to 𝐶 , 𝐶 to 𝐷,
and 𝐷 to 𝐵 by train, in exactly one way each, and not backwards.

𝑇 =

fro
m

𝐵
𝐶
𝐷

to

⎡⎢⎢⎣

𝐵
1

𝐶
1

𝐷
0

0 1 1
1 0 1

⎤⎥⎥⎦
.

(a) Why can’t you add this matrix to matrices 𝐴 or 𝐵?

They have different dimensions!

(b) Rewrite matrix 𝑇 so that it can be meaningfully added to matrices 𝐴 and 𝐵. What did you
do to its dimensions?

We need 𝑇 to be 4 × 4, and we want the entries 𝐴,𝐵, 𝐶,𝐷 to line up properly. Thus, we insert 0s in the 𝐴
column and 𝐴 row, as shown:

𝑇 =

fro
m

𝐴
𝐵
𝐶
𝐷

to

⎡
⎢⎢⎢⎣

𝐴
0

𝐵
0

𝐶
0

𝐷
0

0 1 1 0
0 0 1 1
0 1 0 1

⎤
⎥⎥⎥⎦
.

4. Evaluate the following:

(a)
4∑

𝑘=1
𝑘

4∑
𝑘=1

𝑘 = 1 + 2 + 3 + 4 = 10.

(b)
5∑

𝑘=0
𝑘2

5∑
𝑘=0

𝑘2 = 02 + 12 + 22 + 32 + 42 + 52 = 0 + 1 + 4 + 9 + 16 + 25 = 55.

(c)
10∑
𝑘=1

3

10∑
𝑘=1

3 = 3 + 3 +⋯ + 3
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

10

= 10 ⋅ 3 = 30.

(d)
𝑛∑

𝑘=1
𝑘
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𝑛∑
𝑘=1

𝑘 = 1 + 2 +⋯ + 𝑛
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑛

= (𝑛 + 1) + (𝑛 − 1 + 2) +⋯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑛∕2

= 𝑛(𝑛 + 1)
2

.

(e)
𝑛∑

𝑘=1
𝑛

𝑛∑
𝑘=1

𝑛 = 𝑛 + 𝑛 +⋯ + 𝑛
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑛

= 𝑛2.

(f)
𝑛∑

𝑘=1
1

𝑛∑
𝑘=1

1 = 1 + 1 +⋯ + 1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑛

= 𝑛.

5. The matrix 𝐶𝑇 whose rows are the same as the respective columns of matrix 𝐶 is called the
transpose of 𝐶 . For example,

𝐶 =
[

1 2
3 4

]
, 𝐶𝑇 =

[
1 3
2 4

]
.

(a) Let the elements of 𝐶 be 𝑐𝑖𝑗 and the elements of 𝐶𝑇 be 𝑐′𝑖𝑗 . Write a formula for 𝐶𝑇 in terms
of these elements. That is, 𝑐′𝑖𝑗 =?

We simply have 𝑐′𝑖𝑗 = 𝑐𝑗𝑖; the indices are swapped.

(b) Write
[

2 1 5
4 −2 0

]𝑇
.

We flip it over the main diagonal; since the matrix is not square, we get a matrix with different dimensions!

[
2 1 5
4 −2 0

]𝑇
=
⎡
⎢⎢⎣

2 4
1 −2
5 0

⎤
⎥⎥⎦

6. Fill in the blanks: Multiplying an 𝑚 × 𝑛 matrix by a(n) × 𝑘 matrix gives a(n) × matrix.

Multiplying an 𝑚 × 𝑛 matrix by a(n) 𝑛 × 𝑘 matrix gives a(n) 𝑚 × 𝑛 matrix.

7. Dogs can eat cats, rats, or mice; cats can eat rats or mice; rats can eat mice.

(a) Make a matrix 𝐸 showing what can eat what.

Let dogs be 𝐷, cats be 𝐶 , rats be 𝑅, and mice be 𝑀 . Then the matrix is straightforward. Note that we put
the prey on the left and predator on top because then following the matrices is going through each step in the
food chain.

𝑇 =

pr
ey

𝐷
𝐶
𝑅
𝑀

predator

⎡
⎢⎢⎢⎣

𝐷
0

𝐶
0

𝑅
0

𝑀
0

1 0 0 0
1 1 0 0
1 1 1 0

⎤
⎥⎥⎥⎦
.

Note that the diagonal is all 0s because no animal eats their own species.
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(b) Draw a directed graph.

The graph is shown in Figure 1.

𝑀 𝑅 𝐶 𝐷

Figure 1: The directed graph of 𝐸.

(c) Calculate and interpret 𝐸2, 𝐸3, 𝐸4.

We have

𝐸2 =
⎡⎢⎢⎢⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
2 1 0 0

⎤⎥⎥⎥⎦
.

This means that there are two ways for a mouse’s nutrients to find its way to a dog in two steps (namely,
through a rat and through a cat). Also, there is only one way for a rat to get to a dog in two steps, and only
one way for a mouse to get to a cat in two steps.

We have

𝐸3 = 𝐸𝐸2 =
⎡⎢⎢⎢⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
2 1 0 0

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤⎥⎥⎥⎦
.

This means a mouse can get to a dog in three steps in only one way.
We have

𝐸4 = 𝐸𝐸3 =
⎡⎢⎢⎢⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤⎥⎥⎥⎦

=
⎡⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
.

A matrix of all zeroes! That means there are no paths which take four steps, which makes sense.

8.
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Note that as given in the problem, we have

𝑆 =

[
5 1 0 4

3 1 1 0 0
5 1 1 5

4
3
4 0 1

3 2

]
;

𝐶 =
[
5 20 10 0 1 2 5 12

]
.

(a) Unfortunately, if you try to multiply 𝑆 and 𝐶 as given, it won’t work. Why not?

The dimensions aren’t right! 𝑆 is a 2 × 8 matrix, while 𝐶 is a 1 × 8 matrix.

(b) What do you need to do to 𝐶 so they can be multiplied? Explain the dimensions of each
matrix.

We need to transpose 𝐶 , since 𝐶𝑇 is a 8 × 1 matrix. This lets it be multiplied by 𝑆.

(c) Once you’ve fixed matrix 𝐶 , do the multiplication. What are the dimensions of your an-
swer?

We do the multiplication:

𝑆𝐶𝑇 =

[
5 1 0 4

3 1 1 0 0
5 1 1 5

4
3
4 0 1

3 2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
20
10
0
1
2
5
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[ 48
977
12

]
.

We end up with a 2 × 1 matrix. Indeed, 𝑀2×8𝑀8×1 = 𝑀2×1; in some sense the inner dimensions VANISH,
ANNIHILATE, whatever you like, to leave the outer dimensions behind.

9. Matrix multiplication is not necessarily commutative, even when the dimensions of the matrices
suggest it might be. How do we know? Be specific.

One way to know is to just multiply two random matrices together (chosen for computational convenience)
and check for commutativity:

𝐶 =
[
0 0
0 1

]
; 𝐷 =

[
0 1
0 0

]

We compute 𝐶𝐷 and 𝐷𝐶 :

𝐶𝐷 =
[
0 0
0 1

] [
0 1
0 0

]

=
[
0 0
0 0

]
.𝐷𝐶 =

[
0 1
0 0

] [
0 0
0 1

]

=
[
0 1
0 0

]
⟹ 𝐶𝐷 ≠ 𝐷𝐶.

Oof! Matrix multiplication is not commutative.

10. Matrix multiplication is associative, though. Prove that (𝑃𝑋)𝑌 = 𝑃 (𝑋𝑌 ) for

𝑃 =
[

𝑚 𝑛
𝑝 𝑞

]
, 𝑋 =

[
𝑥 𝑦
𝑧 𝑤

]
, 𝑌 =

[
𝑟 𝑠
𝑡 𝑢

]
.
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With great dread, we compute (𝑃𝑋)𝑌 and 𝑃 (𝑋𝑌 ).

(𝑃𝑋)𝑌 =
([

𝑚 𝑛
𝑝 𝑞

] [
𝑥 𝑦
𝑧 𝑤

])[
𝑟 𝑠
𝑡 𝑢

]

=
[
𝑚𝑥 + 𝑛𝑧 𝑚𝑦 + 𝑛𝑤
𝑝𝑥 + 𝑞𝑧 𝑝𝑦 + 𝑞𝑤

] [
𝑟 𝑠
𝑡 𝑢

]

=
[
𝑟(𝑚𝑥 + 𝑛𝑧) + 𝑡(𝑚𝑦 + 𝑛𝑤) 𝑠(𝑚𝑥 + 𝑛𝑧) + 𝑢(𝑚𝑦 + 𝑛𝑤)
𝑟(𝑝𝑥 + 𝑞𝑧) + 𝑡(𝑝𝑦 + 𝑞𝑤) 𝑠(𝑝𝑥 + 𝑞𝑧) + 𝑢(𝑝𝑦 + 𝑞𝑤)

]

=
[
𝑚𝑟𝑥 + 𝑚𝑡𝑦 + 𝑛𝑟𝑧 + 𝑛𝑡𝑤 𝑚𝑠𝑥 + 𝑚𝑢𝑦 + 𝑛𝑠𝑧 + 𝑛𝑢𝑤
𝑝𝑟𝑥 + 𝑝𝑡𝑦 + 𝑞𝑟𝑧 + 𝑞𝑡𝑤 𝑝𝑠𝑥 + 𝑝𝑢𝑦 + 𝑞𝑠𝑧 + 𝑞𝑢𝑤

]
.

𝑃 (𝑋𝑌 ) =
[
𝑚 𝑛
𝑝 𝑞

]([
𝑥 𝑦
𝑧 𝑤

] [
𝑟 𝑠
𝑡 𝑢

])

=
[
𝑚 𝑛
𝑝 𝑞

] [
𝑥𝑟 + 𝑦𝑡 𝑥𝑠 + 𝑦𝑢
𝑧𝑟 +𝑤𝑡 𝑧𝑠 +𝑤𝑢

]

=
[
𝑚(𝑥𝑟 + 𝑦𝑡) + 𝑛(𝑧𝑟 +𝑤𝑡) 𝑚(𝑥𝑠 + 𝑦𝑢) + 𝑛(𝑧𝑠 +𝑤𝑢)
𝑝(𝑥𝑟 + 𝑦𝑡) + 𝑞(𝑧𝑟 +𝑤𝑡) 𝑝(𝑥𝑠 + 𝑦𝑢) + 𝑞(𝑧𝑠 +𝑤𝑢)

]

=
[
𝑚𝑟𝑥 + 𝑚𝑡𝑦 + 𝑛𝑟𝑧 + 𝑛𝑡𝑤 𝑚𝑠𝑥 + 𝑚𝑢𝑦 + 𝑛𝑠𝑧 + 𝑛𝑢𝑤
𝑝𝑟𝑥 + 𝑝𝑡𝑦 + 𝑞𝑟𝑧 + 𝑞𝑡𝑤 𝑝𝑠𝑥 + 𝑝𝑢𝑦 + 𝑞𝑠𝑧 + 𝑞𝑢𝑤

]
.

They are equal!
Note that this doesn’t prove it’s associative for all qualifying18 matrices because we’ve only shown it for

2 × 2 matrices.

11. Prove that matrix multiplication is distributive: 𝑃 (𝑋 + 𝑌 ) = 𝑃𝑋 + 𝑃𝑌 .

This isn’t as bad.

𝑃 (𝑋 + 𝑌 ) =
[
𝑚 𝑛
𝑝 𝑞

]([
𝑥 𝑦
𝑧 𝑤

]
+
[
𝑟 𝑠
𝑡 𝑢

])

=
[
𝑚 𝑛
𝑝 𝑞

] [
𝑥 + 𝑟 𝑦 + 𝑠
𝑧 + 𝑡 𝑤 + 𝑢

]

=
[
𝑚(𝑥 + 𝑟) + 𝑛(𝑧 + 𝑡) 𝑚(𝑦 + 𝑠) + 𝑛(𝑤 + 𝑢)
𝑝(𝑥 + 𝑟) + 𝑛(𝑧 + 𝑡) 𝑝(𝑦 + 𝑠) + 𝑞(𝑤 + 𝑢)

]

=
[
(𝑚𝑥 + 𝑛𝑧) + (𝑚𝑟 + 𝑛𝑡) (𝑚𝑦 + 𝑛𝑤) + (𝑚𝑠 + 𝑛𝑢)
(𝑝𝑥 + 𝑛𝑧) + (𝑝𝑟 + 𝑛𝑡) (𝑝𝑦 + 𝑞𝑤) + (𝑝𝑠 + 𝑞𝑢)

]

=
[
𝑚 𝑛
𝑝 𝑞

] [
𝑥 𝑦
𝑧 𝑤

]
+
[
𝑚 𝑛
𝑝 𝑞

] [
𝑟 𝑠
𝑡 𝑢

]

= 𝑃𝑋 + 𝑃𝑌 .

Indeed, they are equal!

12. When does 𝑃𝑋 = 𝑋𝑃? Don’t worry if you get some messy equations in your answer.

Let’s try it.

𝑃𝑋 =
[
𝑚 𝑛
𝑝 𝑞

] [
𝑥 𝑦
𝑧 𝑤

]

=
[
𝑚𝑥 + 𝑛𝑧 𝑚𝑦 + 𝑛𝑤
𝑝𝑥 + 𝑞𝑧 𝑝𝑦 + 𝑞𝑤

]

𝑋𝑃 =
[
𝑥 𝑦
𝑧 𝑤

] [
𝑚 𝑛
𝑝 𝑞

]

=
[
𝑥𝑚 + 𝑦𝑝 𝑥𝑛 + 𝑦𝑞
𝑧𝑚 +𝑤𝑝 𝑧𝑛 +𝑤𝑞

]

18In terms of dimension.
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Equating terms, we get

⎧⎪⎪⎨⎪⎪⎩

𝑚𝑥 + 𝑛𝑧 = 𝑥𝑚 + 𝑦𝑝
𝑚𝑦 + 𝑛𝑤 = 𝑥𝑛 + 𝑦𝑞
𝑝𝑥 + 𝑞𝑧 = 𝑧𝑚 +𝑤𝑝
𝑝𝑦 + 𝑞𝑤 = 𝑧𝑛 +𝑤𝑞

⟹

⎧⎪⎪⎨⎪⎪⎩

𝑛𝑧 = 𝑦𝑝
𝑚𝑦 + 𝑛𝑤 = 𝑥𝑛 + 𝑦𝑞
𝑝𝑥 + 𝑞𝑧 = 𝑧𝑚 +𝑤𝑝
𝑝𝑦 = 𝑧𝑛

.

13. Cook’s Seafood Restaurant in Menlo Park sells fish and chips. The Captain’s order is two pieces
of fish and one order of chips, while the Regular order is one piece of fish and one order of
chips.

(a) Write a matrix representing these facts, with clear labels on your rows and columns.

Let Captain = 𝐶 and Regular = 𝑅. Then the matrix is:

𝑀 =
fish chips[ ]

𝐶 2 1
𝑅 1 1

.

I’m writing it this way rather than the transpose so that the order of the matrices in the next problem is
the same as the problems appear. Otherwise, you’d have to flip the order of multiplication (remember, it’s not
commutative!).

(b) The restaurant management estimates their cost at 0.75 for each piece of fish and 0.50 for
each order of chips. Represent this as a matrix, then use matrix multiplication to calculate
the cost of the two possible orders.

𝑁 =
cost ($)[ ]

fish 0.75
chips 0.50

.

Now we just multiply the matrices:

𝑀𝑁 =
fish chips[ ]

𝐶 2 1
𝑅 1 1

cost ($)[ ]
fish 0.75

chips 0.50

=
cost ($)[ ]

𝐶 2
𝑅 1.25

.

Thus, the cost of a Captain’s order is $2 and the cost of a Regular order is $1.25 (for the restaurant).

(c) For a party, Cook’s provides 10 Captain’s orders and 5 Regular orders. Write this as a
matrix and use matrix multiplication to find how many pieces of fish and orders of chips
are provided.

We want to multiply this matrix by 𝑀 and get a 2 × 1 or 1 × 2 matrix of fish and chips. Thus, we choose
the 1 × 2 matrix
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𝑃 =
𝐶 𝑅[ ]
10 5 ,

so that the product is simply

𝑃𝑀 =
𝐶 𝑅[ ]
10 5

fish chips[ ]
𝐶 2 1
𝑅 1 1

=
fish chips[ ]
25 15 .

Thus, 25 pieces of fish and 15 orders of chips are provided.

(d) Now use matrix multiplication to find out the cost of the party.

We need to multiply 𝑃𝑀 by 𝑁 to get a 1 × 1 matrix:

𝑃𝑀𝑁 =
fish chips[ ]
25 15

cost ($)[ ]
fish 0.75

chips 0.50
=
[
26.25

]
.

Thus, the party costs $26.25 for the restaurant.

14. We will find coefficient matrices to be particularly useful for solving systems of linear equations.
For instance, {

3𝑥 + 4𝑦 = 5
6𝑥 + 4𝑦 = 8

⟷
[

3 4
6 7

] [
𝑥
𝑦

]
=
[

5
8

]
.

Rewrite
⎧⎪⎨⎪⎩

2𝑥 + 3𝑦 + 4𝑧 = 5
5𝑥 − 4𝑦 + 2𝑧 = 2
𝑥 + 2𝑦 = 7

as a matrix equation in this way.

We rewrite the last equation as 𝑥 + 2𝑦 + 0𝑧 = 7 and proceed to tabulate the coefficients:

⎡⎢⎢⎣

2 3 4
5 −4 2
1 2 0

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑀

⎡
⎢⎢⎣

𝑥
𝑦
𝑧

⎤
⎥⎥⎦
=
⎡
⎢⎢⎣

5
2
7

⎤
⎥⎥⎦
.

15.

(a) What is the transpose of the 3 × 3 matrix 𝑀 from the previous problem?

𝑀 is shown in the previous problem above. We flip it, obtaining

𝑀𝑇 =
⎡⎢⎢⎣

2 5 1
3 −4 2
4 2 0

⎤⎥⎥⎦
.

(b) Use 𝑀𝑇 to rewrite the system in the previous problem.

At first, one might try flipping the order of the column matrix to say 𝑧, 𝑦, 𝑥 (from top to bottom). But this
doesn’t work.

Thinking in terms of what columns and rows mean, we can label them in the original equation from the
previous problem:
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𝑥 𝑦 𝑧[ ]Eq. 1 2 3 4
Eq. 2 5 −4 2
Eq. 3 1 2 0

[ ]𝑥 𝑥
𝑦 𝑦
𝑧 𝑧

=

[ ]Eq. 1 5
Eq. 2 2
Eq. 3 7

.

Doing the same for 𝑀𝑇 , we get

𝑀𝑇 =

Eq. 1 Eq. 2 Eq. 3[ ]𝑥 2 5 1
𝑦 3 −4 2
𝑧 4 2 0

.

We realize that to get a matrix containing the values of Equations 1-3, we need to left-multiply 𝑀𝑇 by a
1 × 3 matrix

[
𝑥 𝑦 𝑧

]
:

[
𝑥 𝑦 𝑧

] ⎡⎢⎢⎣

2 5 1
3 −4 2
4 2 0

⎤⎥⎥⎦
=
[
5 2 7

]
.

This looks quite similar to the previous problem! In symbols, if 𝐴 =
⎡⎢⎢⎣

𝑥
𝑦
𝑧

⎤⎥⎥⎦
and 𝐵 =

⎡⎢⎢⎣

5
2
7

⎤⎥⎥⎦
, we have

𝑀𝐴 = 𝐵
⏟⏞⏟⏞⏟
prev. prob.

⟷ 𝐴𝑇𝑀𝑇 = 𝐵𝑇 .

(c) What is the transpose of the transpose matrix, (𝑀𝑇 )𝑇 ?

Since we’re just reflecting over the diagonal twice, we have (𝑀𝑇 )𝑇 = 𝑀 .
This brings up an interesting fact, thinking back to the last subproblem. In general for any matrices 𝑃 ,𝑄,𝑅,

we have

𝑃𝑄 = 𝑅 ⟷ 𝑄𝑇𝑃 𝑇 = 𝑅𝑇 .

Taking the transpose of both sides of the right equation, we get

(𝑄𝑇𝑃 𝑇 )𝑇 = (𝑅𝑇 )𝑇 = 𝑅.

Equating this with the left equation, we get

𝑃𝑄 = (𝑄𝑇𝑃 𝑇 )𝑇 .

Succulent!
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